SQN
SQN
type
status
date
slug
summary
tags
category
icon
password
😀
论文SQN: Weakly-Supervised Semantic Segmentation of Large-Scale 3D Point Clouds的阅读笔记
 

📝 SQN

Overview

两个主要组件:
  1. a point local feature extractor to learn diverse visual patterns;
  1. a flexible point feature query network to collect as many as possible relevant semantic features for weakly-supervised training
notion image

Point Local Feature Extractor

  • 可替换为任意的backbone
  • 降采样操作提取多尺度局部特征

Point Feature Query Network

  • 将有label的点与其周围点的特征聚合,从而有label的点的训练信号可以分析给它周围的点

Searching Spatial Neighbouring Point Features

search the nearest K points in each of the previous 4-level encoded features

Interpolating Query Point Features

apply the trilinear interpolation method to compute a feature vector for p

Inferring Query Point Semantics

feed the unique and representative feature vector into a series of MLPs
 

🤗 Summary

基于本论文实现了SQN pytorch-lightning的版本.
SQN_pl
BigCiLengUpdated Jun 12, 2023

📎 参考文章

  • 一些引用
  • 引用文章
 
安装opencv4.23DGaussianSplatting
  • GitTalk
  • WebMention